Published online 2 September 2009 in Wiley InterScience (www.interscience.wiley.com).

Abstract

A series of 47 novel N^{1}-alkylated-2-aryl-5(6)-substituted-1 H-benzimidazoles and their three novel indole analogues were synthesized and evaluated for in vitro antifungal activities against Candida species by the tube dilution method. The results showed that compounds $\mathbf{7 9}$ and $\mathbf{8 0}$, having pyridine at the position C-2, of benzimidazoles exhibited the greatest activity with MIC values of $6.25-3.12 \mu \mathrm{~g} / \mathrm{mL}$. Indole analogues 108-110 have no inhibitory activity.

J. Heterocyclic Chem., 46, 936 (2009).

INTRODUCTION

We have already reported the synthesis and potent antifungal evaluation of a series of 2-substituted-phenyl- 1 H -benzimidazole-5-carbonitriles [1]. The study revealed that among the synthesized benzimidazoles compound I exhibited greatest antifungal activity with the MIC of $3.12 \mu \mathrm{~g} / \mathrm{mL}$ against Candida albicans, Candida krusei, Candida glabrata, and Candida parapsilosis (Fig. 1).

We planned to modify the structure of compound \mathbf{I} in order to find more potent new antifungal agents.

RESULTS AND DISCUSSION

Noncommercial starting material o-phenylenediamines were prepared according to the literature methods, which are given in Scheme 1. The synthetic pathways for preparation of the targeted benzimidazoles listed in Table 1 are shown in Schemes 2 and 3. Nucleophilic displacement of the chloro group of $\mathbf{1 - 1 5}$ (Table 2), by the reaction with
several amines in N, N-dimethylformamide gave 16-33 (Table 3). Their reduction with hydrogen gas by using palladium carbon or tin/hydrochloric acid produced 3459 (Table 4). Condensation of these derivatives with the sodium metabisulfite adduct of appropriate benzaldehydes gave the targeted benzimidazoles $\mathbf{6 0 - 7 3}, 75,78-$ $\mathbf{8 0}, \mathbf{8 3}, \mathbf{8 4}, \mathbf{9 0 - 9 7}, 99-102,104$ [1]. Heck and Nolley [23] reaction of $\mathbf{7 3}$ with (trimethylsilyl)acetylene led to 74a, whose silyl group was cleaved to yield 5-ethynylbenzimidazole 74. 77 was prepared by diazotation of 76, followed by treatment with sodium azide. Acylation of 3-amino-4-(butylamino)benzonitrile with 4-pyridazine and pyrazine carbonyl chlorides gave the corresponding monoamide derivatives 81a and 82a, following this cyclization of these compounds with glacial acetic acid and anhydrous sodium acetate afforded $\mathbf{8 1}$ and $\mathbf{8 2}$. The nitrile group of I was converted to carboxyaldehyde 85, by using diisobutylaluminum hydride (DIBAL), in a moderato yield, and aldehyde group was transformed to the oxime ether 86 . The 1,2,4-oxadiazol-3-yl- 1 H -benzimidazole $\mathbf{8 8}$ was obtained by reaction of I first with hydroxylamine to amidoxime 87 and subsequently with acetic anhydride. In addition, another 1 H -benzimidazole-5-carbonitrile 89a reacted with sodium azide at high temperature to yield 5 -substituted $1 H$-tetrazole 89. Benzylic cleavage of $\mathbf{9 7}$ afforded 98 by reduction with hydrogen gas. Alkylation of tautomeric imidazole NH of 99-102 with butyl bromide in N, N-dimethylformamide gave 103,

Scheme 1. Synthesis of noncommercial o-phenylenediamines.

105-107 in good yield. For the preparation of $\mathbf{1 1 0}$ which is the indole analogous of $\mathbf{8 9}$ a, first 108 was prepared by the well-known Fischer indole synthesis method (Scheme 3) [24]. Alkylation of this compound gave 109, then bromine was converted to the nitrile with copper(I) cyanide.

The benzimidazoles $\mathbf{6 0 - 1 1 0}$ were tested in vitro for antifungal activity against C. albicans (ATCC 10231), C. krusei (ATCC 6258), C. parapsilosis (ATCC 22019), and C. glabrata (Clinical isolate) by the tube dilution method [25] and the MIC values are listed in Table 1.

Table 1
In vitro antifungal activities and formulas of $\mathbf{6 0}-\mathbf{1 1 0}$.

$\mathrm{MIC}_{100}=$ Minimum inhibitory concentrations, C a , Candida albicans; C k, Candida krusei; C p, Candida parapsilosis; C g, Candida glabrata; I, formula in Figure 1; Flu, Fluconazole.

Scheme 2. Synthesis of benzimidazoles 60-107. Reagents (a) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ adduct of the corresponding benzaldehydes; (b) (Trimethylsilyl)-acetylen; (c) $\mathrm{KOH} / \mathrm{MeOH}$; (d) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; (e) $\mathrm{NaNO}_{2}-\mathrm{HCl} / \mathrm{NaN}_{3}$; (f) For 81a: 4-Pyridazinecarboxylic acid and HBTU; For 82a: Pyrazinecarbonyl chloride; (g) Glacial acetic acid/anhydrous Na-acetate; (h) DIBAL; (i) Methoxyl-amine HCl ; (j) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, i-\mathrm{Pr}_{2} \mathrm{NEt}$; (k) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$; (l) Pd .C/H2; and (m) Butyl bromide/ NaH .

The synthesized compounds and reference drugs were dissolved in dimethyl sulfoxide-water (50%) at a concentration of $400 \mu \mathrm{~g} / \mathrm{mL}$. The concentration was adjusted to
$100 \mu \mathrm{~g} / \mathrm{mL}$ by fourfold dilution with media culture and fungi solution at the first tube. Data was not taken for the initial solution because of the high concentration (12.5\%).

Scheme 3. Synthesis of indole analogues 108-110. Reagents (a) 4^{\prime}-fluoroacetophenone, trimethylamine; (b) PPA; (c) Propyl bromide, NaH; and (d) CuCN, N-methyl-2-pyrrolidone.

The result demonstrates that some of the benzimidazoles in this series showed the good activity profiles versus some Candida species. Among of them, compounds $\mathbf{7 9}$ and $\mathbf{8 0}$ exhibited the greatest activity with MIC values of $6.25-3.12 \mu \mathrm{~g} / \mathrm{mL}$. These compounds are having pyridine moiety at the position of $\mathrm{C}-2$ instead of phenyl
in compound I (Fig. 1). Replacement of phenyl moiety to 4-pyridazine (81) or pyrazine (82) caused to reduce inhibitory activity. Most of the other electron withdrawing group which could be the bioequivalence of cyano at the position of C-5 were tested, however, as no better result were found with them, cyano group was accepted

Table 2
Formulas and some properties of $\mathbf{1 - 1 5}$.

Comp	R_{7}	R_{6}	R_{5}	R_{4}	X	Formulas	References, physical and spectral data
1	Cl				Cl	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	Commercial
2		Cl			Cl	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	Commercial
3			F		Cl	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClFNO}_{2}$	Commercial
4			Cl		Cl	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	Commercial
5			Br		Cl	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrClNO}_{2}$	$\mathrm{mp} 69^{\circ} \mathrm{C}$, ref. $2,71-72^{\circ} \mathrm{C}$
6			I		Cl	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClINO}_{2}$	$\begin{aligned} & \mathrm{mp} 74^{\circ} \mathrm{C} \text {, ref. } 3,74.5^{\circ} \mathrm{C} \\ & { }^{1} \mathrm{H} \text { NMR: } \delta 7.28 \\ & (\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) \\ & 7.82(\mathrm{dd}, 1 \mathrm{H}, J=2,8.6 \mathrm{~Hz}) \\ & 8.17(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}) \end{aligned}$
7	Br				Cl	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrClNO}_{2}$	ref. 4
8	Cl		Cl		Cl	$\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{3} \mathrm{NO}_{2}$	ref. 5
9	CN				Cl	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{O}_{2}$	ref. 6
10		CN			Cl	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{O}_{2}$	ref. 1
11			CN		Cl	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{O}_{2}$	Commercial
12				CN	Cl	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{O}_{2}$	$\mathrm{mp} 65^{\circ} \mathrm{C}$, ${ }^{\text {a }}$ ref. $7 \mathrm{mp} 85^{\circ} \mathrm{C}$; IR (potassium bromide): 2240 (CN) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.57$ $(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.69(\mathrm{dd}$, $1 \mathrm{H}, J=1.2,7.6 \mathrm{~Hz}$), 7.75 $(\mathrm{dd}, 1 \mathrm{H}, J=1.2,8.5 \mathrm{~Hz})$
13		Cl	CN		F	$\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{ClFN}_{2} \mathrm{O}_{2}$	ref. $8, \mathrm{mp} 83^{\circ} \mathrm{C}$, ref. $9,84-85^{\circ} \mathrm{C}$
14			COCH_{3}		Cl	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{3}$	Commercial
15			NO_{2}		Cl	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{O}_{4}$	Commercial

[^0]Table 3
Formulas and some properties of $\mathbf{1 6 - 3 3}$.

No	R_{1}	R_{7}	R_{6}	R_{5}	R_{4}	Formulas	References, physical and spectral data
16	H				Cl	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClN}_{2} \mathrm{O}_{2}$	$\begin{aligned} & \mathrm{mp} 108-109 \text {, ref. } 10 \mathrm{mp} 108-108.5 ;{ }^{1} \mathrm{H} \text { NMR: } \delta 6.7(\mathrm{dd}, 1 \mathrm{H}, J= \\ & 1.2,8.4 \mathrm{~Hz}), 6.82(\mathrm{dd}, 1 \mathrm{H}, J=1.2,8.5 \mathrm{~Hz}), 7.16(\mathrm{t}, 1 \mathrm{H}, J=8.3) \end{aligned}$
17	n-butyl	Cl				$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$	Oily; ${ }^{1} \mathrm{H}$ NMR: $\delta 0.93(\mathrm{t}, 3 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{q}$, $2 \mathrm{H}), 6.67$ (br.s, 1H), $6.72(\mathrm{t}, 1 \mathrm{H}), 7.48(\mathrm{dd}, 1 \mathrm{H}, J=1.6,8.2 \mathrm{~Hz})$, $7.91(\mathrm{dd}, 1 \mathrm{H}, J=1.6,8.4 \mathrm{~Hz}) ; \mathrm{ms}: m / z 229$ (100), 231 (33)
18	n-butyl		Cl			$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$	Oily, ref. 11
19	n-butyl			F		$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{2}$	ref. 12
20	n-butyl			Cl		$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$	ref. 1
21	n-butyl			Br		$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$	Purification: ethyl acetate:hexane (10:90) cc; Oily; ${ }^{1} \mathrm{H}$ NMR: $\delta 0.98$ $(\mathrm{t}, 3 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{q}, 2 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}$, $J=8.8), 7.48(\mathrm{dd}, 1 \mathrm{H}, J=2.4,8.8 \mathrm{~Hz}), 8.03($ br.t, 1 H$), 8.31$ (d, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}$); ms: $m / \mathrm{z} 273$ (100), 275 (100)
22	n-butyl			I		$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{IN}_{2} \mathrm{O}_{2}$	Purification: ethyl acetate:hexane (10:90) cc; Oily; ${ }^{1} \mathrm{H}$ NMR: $\delta 0.985$ $(\mathrm{t}, 3 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{q}, 2 \mathrm{H}), 6.64(\mathrm{~d}, 1 \mathrm{H}$, $J=9.2 \mathrm{~Hz}), 7.61(\mathrm{dd}, 1 \mathrm{H}, J=2,9.2 \mathrm{~Hz}), 8.04$ (br.t, 1H), 8.46 (d, 1H, $J=2 \mathrm{~Hz}$); ms: $m / z 321$
23	n-butyl	Br				$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$	Purification: ethyl acetate:hexane (20:80) cc; Oily; ${ }^{1} \mathrm{H}$ NMR: $\delta 0.92$ $(\mathrm{t}, 3 \mathrm{H}), 1.38(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{q}, 2 \mathrm{H}), 6.05$ (br.s, 1H), $6.68(\mathrm{t}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=1.6$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}$); ms: m/z 273 (100), 275 (100)
24	n-butyl	Cl		Cl		$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	Purification: ethyl acetate:hexane (10:90) cc; Oily; ${ }^{1} \mathrm{H}$ NMR: $\delta 0.93$ $(\mathrm{t}, 3 \mathrm{H}), 1.37(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 3.4(\mathrm{q}, 2 \mathrm{H}), 6.72($ br.s, 1 H$)$, $7.49(\mathrm{~d}, 1 \mathrm{H}), 7.94$ (d, 1H); ms: m/z 263 (100), 265 (61), 267(11)
25	H	CN				$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}$	$\mathrm{mp} 133-135^{\circ} \mathrm{C}$, ref. $13 \mathrm{mp} 129-130^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (Deuteriochloroform $\left.+\mathrm{D}_{2} \mathrm{O}\right)$: $\delta 6.79(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.7(\mathrm{dd}, 1 \mathrm{H}, J=1.2$, $7.6 \mathrm{~Hz}), 8.4(\mathrm{dd}, 1 \mathrm{H}, J=1.6,8 \mathrm{~Hz})$
26	n-butyl	CN				$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$	Purification: ethyl acetate:hexane (40:60) cc; $\mathrm{mp} 37^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR: $\begin{aligned} & \delta 0.96(\mathrm{t}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{q}, 2 \mathrm{H}), 6.68(\mathrm{t}, 1 \mathrm{H}), \\ & 7.17(\mathrm{dd}, 1 \mathrm{H}), 8.35(\mathrm{dd}, 1 \mathrm{H}), 8.46(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}) ; \text { ms: } \mathrm{m} / \mathrm{z} 220(100) \end{aligned}$
27	n-butyl		CN			$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$	Purification: Cryst. ethanol; mp $83-85^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR: $\delta 1.02(\mathrm{t}, 3 \mathrm{H})$, $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{q}, 2 \mathrm{H}), 6.85(\mathrm{dd}, 1 \mathrm{H}), 7.15$ (d, $1 \mathrm{H}, J=1.5 \mathrm{~Hz}$), 8.03 (br.s, 1 H), $8.26(\mathrm{~d}, 1 \mathrm{H}, J=8.4)$; $\mathrm{ms}: m / z 220$ (100)
28	n-butyl			CN		$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$	ref. 1
29	n-pentyl			CN		$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$	Purification: Cryst. ethanol; ${ }^{1} \mathrm{H}$ NMR: $\delta 0.95(\mathrm{t}, 3 \mathrm{H}), 1.47(\mathrm{~m}, 4 \mathrm{H})$, $1.73(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{q}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=9.1,1 \mathrm{H}), 7.58(\mathrm{dd}, 1 \mathrm{H})$, 8.41 (br.s, 1 H), 8.51 (d, $1 \mathrm{H}, J=1.3$)
30	n-butyl				CN	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$	Purification: ethyl acetate:hexane (40:60) cc; mp $82-84^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR: $\delta 0.98(\mathrm{t}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{q}, 2 \mathrm{H}), 7.08(\mathrm{~d}$, 1 H), $7.12(\mathrm{~d}, 1 \mathrm{H}), 7.46(\mathrm{t}, 1 \mathrm{H}), 8.13$ (br.s, 1H); ms: m/z 220 (100)
31	n-butyl		Cl	CN		$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2}$	Purification: Cryst. ethanol; mp $83{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 1.02(\mathrm{t}, 3 \mathrm{H}), 1.49$ (m, 2H), $1.75(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{q}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H})$, 8.5 (s, 1H); ms: m/z 254 (100), 256 (33)
32	n-butyl			COCH_{3}		$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$	ref. 14
33	n-butyl			NO_{2}		$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$	ref. 15

as a best pharmacophore at this position. Moreover, changing the position of cyano group from $\mathrm{C}-5$, to $\mathrm{C}-4$ (91), C-6 (68), and C-7 (66), did not give better result. In addition, this cyano group was converted to the aldehyde (85), oxime (86), oxadiazole (88), and tetrazole (89), unfortunately activity was reduced again. Because
we have already reported that, the best group was butyl at position $\mathrm{N}-1$, no more modifications have been done in this study, only compound 83 with n-pentyl group was prepared, which also caused to reduce activity. Among the halogenated compounds, the best results were obtained with 93 against C. parapsilosis with the MIC

Table 4
Formulas and some properties of 34-59.

Com	R_{1}	R_{7}	R_{6}	R_{5}	R_{4}	Formulas	References, physical and spectral data
34		Cl				$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ClN}_{2}$	Oily; ${ }^{1} \mathrm{H}$ NMR: $\delta 3.45$ (br.s, 2H), 3.75 (br.s, 2 H), 6.62 (m, 2H), 6.814 (m, 1H); ms: m/z 143 (100), 145 (31)
35	n-butyl	Cl				$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{2}$	```Purification: ethyl acetate:hexane (20:80) cc; Oily; '1H NMR: \delta 0.94 (t, 3H), 1.43(m, 2H), 1.56 (m, 2H), 2.92 (t, 2H), 3.95 (br.s, 1H), 6.59 (dd, 1H,J=1.6, 7.2 Hz), 6.76 (m, 2H); ms: m/z 199 (100), 201 (36)```
36	n-butyl		Cl			$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{2}$	${ }^{1} \mathrm{H}$ NMR: $\delta 0.98(\mathrm{t}, 3 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 3.1(\mathrm{t}, 2 \mathrm{H}), 3.2$ (br.s), 6.61 (m, 3H); ms: m/z 199 (100), 201 (32)
37	n-butyl			F		$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{FN}_{2}$	ref. 12
38	n-butyl			Cl		$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{2}$	ref. 1
39	n-butyl			Br		$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BrN}_{2}$	Oily; ${ }^{1} \mathrm{H}$ NMR: $\delta 0.97(\mathrm{t}, 3 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 3.06$ $(\mathrm{t}, 2 \mathrm{H}), 3.32$ (br.s, 3 H$), 6.50(\mathrm{~d}, 1 \mathrm{H}, J=8.8), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=$ 2 Hz), 6.89 (dd, $1 \mathrm{H}, J=2.4,8.4 \mathrm{~Hz}$); ms: $m / z 243$ (100), 245 (100)
40	n-butyl			I		$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{IN}_{2}$	Oily; ${ }^{1} \mathrm{H}$ NMR: $\delta 0.96(\mathrm{t}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 3.06$ (t, 2H), 3.32 (br.s, 3H), 6.39 (d, 1H, $J=8.8$), 6.98 (d, 1H, $J=2$ Hz), 7.09 (dd, $1 \mathrm{H}, J=2.1,8.4 \mathrm{~Hz}$); ms: $m / z 291$ (100)
41	n-butyl	Br				$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BrN}_{2}$	Oily; ${ }^{1} \mathrm{H}$ NMR: $\delta 0.91(\mathrm{t}, 3 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 2.91$ (t, 2H), 3.28 (br.s, 1H), 3.98 (br.s, 2 H), 6.64 (dd, $1 \mathrm{H}, J=1.2$, $7.6 \mathrm{~Hz}), 6.74(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 6.91(\mathrm{dd}, 1 \mathrm{H}, J=1.6,8 \mathrm{~Hz})$; ms: m/z 243 (100), 245 (100)
42	n-butyl	Cl		Cl		$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2}$	Waxy; ${ }^{1} \mathrm{H}$ NMR: $\delta 0.92(\mathrm{t}, 3 \mathrm{H}), 1.38(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 3.43$ $(\mathrm{t}, 2 \mathrm{H}), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=1.2), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=1.2) ; \mathrm{ms}: m / z$ 233 (100), 235 (63), 237 (11)
43		CN				$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3}$	${ }^{1} \mathrm{H}$ NMR: $\delta 3.43$ (br.s, 2H), 4.11 (br.s, 2H), 6.67 (t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.84(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$; ms: $m / z 134$ (100)
44	n-butyl	CN				$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3}$	Oily; ${ }^{1} \mathrm{H}$ NMR (Deuteriochloroform $+\mathrm{D}_{2} \mathrm{O}$): $\delta 0.94(\mathrm{t}, 3 \mathrm{H}), 1.43$ $(\mathrm{m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{t}, 2 \mathrm{H}), 3.28$ (br.s, 1H), 3.66 (br.s, $2 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{dd}, 1 \mathrm{H}, J=1.6,7.6 \mathrm{~Hz})$; ms: m / z 190 (100)
45	n-butyl		CN			$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3}$	ms: m/z 190 (100)
46	n-butyl			CN		$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3}$	ref. 1
47	n-pentyl			CN		$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3}$	Not isolated, because it was immediately getting black colored
48	n-butyl				CN	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3}$	$\begin{aligned} & \mathrm{mp} 76-78^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \text { NMR: } \delta 0.97(\mathrm{t}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), \\ & 3.09(\mathrm{t}, 2 \mathrm{H}), 4.28(\mathrm{br} . \mathrm{s}), 6.78(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \\ & 190(100) \end{aligned}$
49	n-butyl		Cl	CN		$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClN}_{3}$	${ }^{1}{ }^{1}$ H NMR: $\delta 0.98(\mathrm{t}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.7(\mathrm{~m}, 2 \mathrm{H}), 3.2(\mathrm{t}, 2 \mathrm{H}), 6.6$ ($\mathrm{s}, 1 \mathrm{H}$), 6.9 (s, 1H); ms: m/z 224 (100), 226 (33)
50	n-butyl			COCH_{3}		$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$	ref. 14
51	n-butyl			NO_{2}		$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$	ref. 15
52				CF_{3}		$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{~N}_{2}$	Commercial
53		Br		CF_{3}		$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BrF}_{3} \mathrm{~N}_{2}$	Commercial
54		Cl			Cl	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2}$	refs. 16, and 17
55			F	F		$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}_{2}$	refs. 18 , and 19
56		F	F	F		$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{~N}_{2}$	refs. 19, and 20
57			Cl	Cl		$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2}$	Commercial
58			Br	Br		$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{2}$	ref. 21
59			CN	CN		$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}$	ref. 22

values of $3.12 \mu \mathrm{~g} / \mathrm{mL}$. Dramatically reduced antifungal activity was also seen by changing the benzimidazole ring to indoles with similar substitutions (108-110). Further
studies are needed to confirm these preliminary results and in vivo and mode of action studies are required to optimize the effectiveness of this series of compounds.

EXPERIMENTAL

Mp were measured with a capillary melting point apparatus Electrothermal 9100 and are uncorrected. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with VARIAN Mercury 400 FT-NMR spectrophotometer, δ scale (ppm) in deuteriochloroform, if not stated otherwise. LC/MS analyses were performed with Waters Alliance (equipped with a diode array UV detection monitoring at 254 nm) and Micromass ZQ by using $\operatorname{ESI}(+)$ method, if not stated otherwise. Elemental analyses were taken on a Leco 932 CHNS analyser; cc, column chromatography. Compound 89a was synthesized as described in our previous study [1].

3-Chloro-2-nitrobenzonitrile (12). The mixture of 0.5 g (2.48 mmol) of 3-chloro-2-nitrobenzoic acid toluene (3 mL) and thionyl chloride (2 mL) were heated at $80^{\circ} \mathrm{C}$ for 4 h . Excess of thionyl chloride and solvent were evaporated, then the residue was stirred in ammonium hydroxide (5 mL) at room temperature for 1 h . The formed precipitate 3 -chloro-2-nitrobenzamide was collected. The solid ($0.46 \mathrm{~g}, 2.3 \mathrm{mmol}$) was added to a solution of PPSA (20 mL), and the mixture was refluxed for 48 h . The reaction mixture was directly carried out to a long silica gel column and eluted with hexanes (200 mL), then dichloromethane. Concentration of the dichloromethane gave the desired nitrile, as a white solid, $0.14 \mathrm{~g}(33.4 \%)$. Then eluting with 5% methanol in dichloromethane recovered 0.16 g of starting material. See Table 2 for spectral data.

2-Amino-3-nitrobenzonitrile (25). The mixture of 9 (0.3 g , 1.65 mmol) and saturated ethanolic ammonia solution (30 mL) were heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 5 h , ethanol was removed, and washing with water of the residue gave pure compound, $0.2 \mathrm{~g}(74 \%)$. See Table 3 for spectral data.

General procedure for synthesis of (17-24, 26-33). To a solution of 1-15 (5 mmol) in ethanol (5 mL), butyl or pentyl amine (15 mmol) was added and heated under reflux until the starting material was consumed (determined by TLC, 8-48 h). The mixture was cooled, water was added. The resultant yellow residue was crystallized from ethanol or purified by cc by using the mixture of ethyl acetate-hexane (30-40:70-60) as eluent (Table 3).

General procedure for synthesis of (34, 37, 38, 43-51, 55, 56). Appropriate nitro derivatives (3 mmol) in ethanol $(30 \mathrm{~mL})$ were reduced by hydrogenation using 40 psi of H_{2} and $10 \% \mathrm{Pd}-\mathrm{C}$ until cessation of H_{2} uptake. The catalyst was filtered off on a bed of Celite, washed with ethanol, and the filtrate was concentrated. This procedure was carried out at the atmospheric pressure for compound 33 (Table 4).
General procedure for synthesis of (35, 36, 39-42, 54). Compound 17, 20-23 (1 mmol), tin(II) chloride dihydrate $(0.75 \mathrm{~g}, 3.33 \mathrm{mmol})$, a granule tin in the mixture of ethanol (3 mL), hydrochloric acid (3 mL), (for 20 HBr and for 21 sulfuric acid were used without tin(II) chloride), and 1.5 mL water were stirred at room temperature for $6-7 \mathrm{~h}$. For compound 40 , the reaction mixture was heated under reflux for 3 h . Then, water and ethyl acetate were added. The pH was rendered basic by addition of an ammonium solution. The slurry was filtered on a Buchner, the resulting solid was washed with ethyl acetate. The combined organic phases were concentrated (Table 4).

General procedure for synthesis of $\mathbf{6 0 - 7 3}, 75,78-80,83$, 84, 90-97, 99-102, 104. The corresponding benzaldehydes (7.5 mmol) were dissolved in 25 mL ethanol and sodium
metabisulfite $(0.8 \mathrm{~g})$ in $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added in portions. The reaction mixture was stirred vigorously and more ethanol was added. The mixture was kept in a refrigerator for a several hours. The precipitate was filtered and dried (yield over 93\%). The mixture of these salts (0.5 mmol) and $\mathbf{3 4 - 5 9}(0.5 \mathrm{mmol})$ in N, N-dimethylformamide $(1 \mathrm{~mL})$ were heated at $120^{\circ} \mathrm{C}$ for 4 h. The reaction mixture was cooled, poured into water, and the solid was filtered.

7-Chloro-2-(4-fluorophenyl)-1H-benzimidazole (60). Purification, cc, ethyl acetate-hexane (1:3), mp $208^{\circ} \mathrm{C}$, yield 56%. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\right.$ DMSO- $\left.d_{6}\right): 7.18(\mathrm{t}, 1 \mathrm{H}), 7.26(\mathrm{dd}, 1 \mathrm{H}, J=0.8$, $6.4 \mathrm{~Hz}), 7.4(\mathrm{t}, 2 \mathrm{H}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 8.25(\mathrm{br} . \mathrm{s}, 2 \mathrm{H})$; ms: $m / z 247$ ($\mathrm{M}+1,100$), 249 ($\mathrm{M}+3,34$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFN}_{2} \mathrm{HOH}: \mathrm{C}, 59.00 ; \mathrm{H}, 3.81 ; \mathrm{N}, 10.58$. Found C, 58.96; H, 3.80; N, 10.54.

2-(4-Fluorophenyl)-1H-benzimidazole-7-carbonitrile (61). Purification, cc, ethyl acetate-hexane (1:1), mp 224$225^{\circ} \mathrm{C}$, yield 47.4%. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\right.$ DMSO- $\left.d_{6}\right): 7.35(\mathrm{t}, 1 \mathrm{H})$, $7.43(\mathrm{t}, 2 \mathrm{H}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=7.2$ Hz), 8.26 (br.s, 2H), 13.5 (br.s, 1H); ms: m/z 238 ($\mathrm{M}+1$, 100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{FN}_{3} 0.1 \mathrm{HOH}: \mathrm{C}, 70.35 ; \mathrm{H}, 3.46$; N, 17.57. Found C, 70.44; H, 3.48; N, 17.15.

2-(4-Fluorophenyl)-5-(trifluoromethyl)-1H-benzimidazole (62). Purification, cc, ethyl acetate-hexane (1:1), mp 178$180^{\circ} \mathrm{C}$, yield $46.4 \% .{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{DMSO}_{6}\right): 7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.54(\mathrm{dd}, 1 \mathrm{H}, J=1.2,8.8 \mathrm{~Hz}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.96$ (s, 1H), 8.26 (m, 2H), 13.35 (br.s, 1H); ms: m/z $281(\mathrm{M}+1$, 100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{~N}_{2}: \mathrm{C}, 60.00 ; \mathrm{H}, 2.88 ; \mathrm{N}, 10.00$. Found C, 59.63; H, 2.89; N 9.93.

1-Butyl-7-chloro-2-phenyl-1H-benzimidazole (63). Purification, cc, ethyl acetate-hexane ($1: 4$), oily, yield 51.5%. ${ }^{1} \mathrm{H}$ NMR δ : $0.8(\mathrm{t}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{t}, 2 \mathrm{H}), 7.2(\mathrm{t}$, $1 \mathrm{H}), 7.26(\mathrm{dd}, 1 \mathrm{H}, J=1.2,7.4 \mathrm{~Hz}), 7.53(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~m}$, $2 \mathrm{H}), 7.71(\mathrm{dd}, 1 \mathrm{H}, J=1.2,8 \mathrm{~Hz})$; ms: $m / \mathrm{z} 285(\mathrm{M}+1,100)$, $287(\mathrm{M}+3,36)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2}: \mathrm{C}, 71.69 ; \mathrm{H}$, 6.02; N, 9.84. Found C, 71.24; H, 6.15; N, 9.77.

1-Butyl-7-chloro-2-(4-fluorophenyl)-1H-benzimidazole (64). Purification, cc, ethyl acetate-hexane (1:3), $\mathrm{mp} 60^{\circ} \mathrm{C}$, yield $32 \% .{ }^{1} \mathrm{H}$ NMR $\delta: 0.8(\mathrm{t}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}$, $2 \mathrm{H}), 4.46(\mathrm{t}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 4 \mathrm{H}), 7.66(\mathrm{~m}, 3 \mathrm{H})$; ms: m/z 303 (M $+1,100), 305(\mathrm{M}+3,35)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClFN}_{2}$: C, 67.44; H, 5.33; N, 9.25. Found C, 67.29; H, 5.27; N, 9.23.

7-Bromo-1-butyl-2-(4-fluorophenyl)-1H-benzimidazole (65). Purification, cc, ethyl acetate-hexane ($1: 1$), $\mathrm{mp} 62^{\circ} \mathrm{C}$, yield 53%. ${ }^{1} \mathrm{H}$ NMR $\delta: 0.79(\mathrm{t}, 3 \mathrm{H}), 1,18(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H})$, $4.48(\mathrm{t}, 2 \mathrm{H}), 7.15(\mathrm{t}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, $7.66(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; \mathrm{ms}: m / z 347(\mathrm{M}+1$, 100), $349(\mathrm{M}+3,100)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrFN}_{2} 0.2 \mathrm{HOH}$: C, $58.20 \mathrm{H} ; 4.71$; N, 7.98. Found C, 58.11 ; H, 4.47; N, 8.08.

1-Butyl-2-(4-fluorophenyl)-1H-benzimidazole-7-carbonitrile (66). Purification, cc, ethyl acetate-hexane ($2: 8$) $\mathrm{mp} 53-54^{\circ} \mathrm{C}$, yield $40.5 \% .{ }^{1} \mathrm{H}$ NMR $\delta: 0.86(\mathrm{t}, 3 \mathrm{H}), 1.3(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~m}$, $2 \mathrm{H}), 4.54(\mathrm{t}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, 1 \mathrm{H}), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ : $164.2(\mathrm{~d}, J=250 \mathrm{~Hz}), 155.1,143.8,134.6,131.75(\mathrm{~d}, J=8.3$ Hz), 129.4, 125.7 (d, $J=2.5 \mathrm{~Hz}$), 125.5, 123.0, 117.1, 116.4 (d, $J=22.1 \mathrm{~Hz}$), 95.1, 45.4, 33.3, 19.5, 13.67; ms: m/z 294 (M $+1,100$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FN}_{3}$: C, $73.70 ; \mathrm{H}, 5.50$; N, 14.32. Found C, 73.84; H, 5.61; N, 14.09.

1-Butyl-6-chloro-2-(4-fluorophenyl)-1 H-benzimidazole (67). Purification, cc, ethyl acetate-hexane (1:2), mp 100-
$101^{\circ} \mathrm{C}$, yield 39.7%. ${ }^{1} \mathrm{H}$ NMR $\delta: 0.88(\mathrm{t}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H})$, 1.75 (m, 2H), 4.16 (t, 2H), 7.19-7.28 (m, 3H), 7.39 (d, 1H, J $=1.6 \mathrm{~Hz}), 7.65-7.73(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 165.2(\mathrm{~d}, J=249$ $\mathrm{Hz}), 153.8,141.9,136.5,131.5(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz}$), 128.7, 126.6, 123.3, 121, $116.2(\mathrm{~d}, J=22 \mathrm{~Hz}), 110.4,44.9,31.9,20.1$, 13.7; ms: m/z 303 ($\mathrm{M}+1,100$) 305 ($\mathrm{M}+3,40$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClFN}_{2}$: C, 67.44; H, 5.33; N, 9.25. Found C, 67.47; H, 5.31; N, 9.17.

1-Butyl-2-(4-fluorophenyl)-1H-benzimidazole-6-carbonitrile (68). Purification, cc, ethyl acetate-hexane ($1: 3$), $\mathrm{mp} 128^{\circ} \mathrm{C}$, yield 72% [26]. ${ }^{1} \mathrm{H}$ NMR $\delta: 0.88(\mathrm{t}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H}), 1.79$ $(\mathrm{m}, 2 \mathrm{H}), 4.23(\mathrm{t}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $7.71(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 164.2(\mathrm{~d}, J=250 \mathrm{~Hz}), 156.2,146.2,135.5,131.5(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}), 126.2,125.9,121.1,120.1,116.4(\mathrm{~d}, J=18 \mathrm{~Hz})$, 115.3, 105.8, 45.2, 32.1, 20.2, 13.7; ms: $m / z 294(\mathrm{M}+1,100)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FN}_{3}$: C, 73.70; $\mathrm{H}, 5.50 ; \mathrm{N}, 14.32$. Found C, 73.48; H, 5.56; N, 14.15.

1-Butyl-5-fluoro-2-(4-fluorophenyl)-1H-benzimidazole (69). Purification, cc, ethyl acetate-hexane (1:3), $\mathrm{mp} 82-83^{\circ} \mathrm{C}$, yield 29%. ${ }^{1} \mathrm{H}$ NMR $\delta: 0.86(\mathrm{t}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}$, $2 \mathrm{H}), 4.19(\mathrm{t}, 2 \mathrm{H}), 7.06(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H})$, 7.46 (dd, $1 \mathrm{H}, J=2,9.4 \mathrm{~Hz}$), 7.67 (m, 2H); ms: $\mathrm{m} / \mathrm{z} 287(\mathrm{M}$ $+1,100$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{2}: \mathrm{C}, 71.31 ; \mathrm{H}, 5.63$; N , 9.78. Found C, 71.26 ; H, 5.49 ; N, 9.84 .

1-Butyl-5-chloro-2-(4-fluorophenyl)-1H-benzimidazole (70). Purification, cryst., ethyl acetate-hexane, $\mathrm{mp} 81-82^{\circ} \mathrm{C}$, yield $31.5 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta: 0.87(\mathrm{t}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}$, $2 \mathrm{H}), 4.18(\mathrm{t}, 2 \mathrm{H}), 7.18-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}$, $1 \mathrm{H}, J=2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 163.9(\mathrm{~d}, J=250 \mathrm{~Hz}), 154.1$, 144.1, 134.4, 131 (d, $J=8.3 \mathrm{~Hz}$), 128.2, 126.6, 123.4, 119.9 , $116.2(\mathrm{~d}, J=21 \mathrm{~Hz}), 111.1,44.9,32,20.1,13.7$; ms: m/z 303 $(\mathrm{M}+1,100) 305(\mathrm{M}+3,40)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClFN}_{2}$: C, 67.44; H, 5.33; N, 9.25. Found C, 67.33; H, 5.25; N, 9.24.

1-Butyl-5-chloro-2-(pyridin-4-yl)-1H-benzimidazole (71). Purification, cryst., ethyl acetate-hexane, $\mathrm{mp} 96-98^{\circ} \mathrm{C}$, yield 34%. ${ }^{1} \mathrm{H}$ NMR $\delta: 0.82(\mathrm{t}, 3 \mathrm{H}), 1.22(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 4.18$ (t, 2H), $7.25(\mathrm{dd}, 1 \mathrm{H}, J=2,8.6 \mathrm{~Hz}), 7.29(\mathrm{dd}, 1 \mathrm{H}, J=0.8$, $8.8 \mathrm{~Hz}), 7.6(\mathrm{dd}, 2 \mathrm{H}, J=1.6,4.6 \mathrm{~Hz}), 7.75(\mathrm{t}, 1 \mathrm{H}), 8.75(\mathrm{dd}$, $2 \mathrm{H}, J=1.6,4.4 \mathrm{~Hz}) ; \mathrm{ms}: m / z 286(\mathrm{M}+1,100), 288(\mathrm{M}+3$, 35). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{3} 0.25 \mathrm{HOH}: \mathrm{C}, 66.2 ; \mathrm{H}, 5.73$; N, 14.48. Found C, 66.4; H, 5.56; N, 14.29.

1-Butyl-5-bromo-2-(4-fluorophenyl)-1H-benzimidazole (72). Purification, ethyl acetate-hexane (2:8), mp $77-79^{\circ} \mathrm{C}$, yield $84 \%[27] .{ }^{1} \mathrm{H}$ NMR $\delta: 0.86(\mathrm{t}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 1.75$ $(\mathrm{m}, 2 \mathrm{H}), 4.18(\mathrm{t}, 2 \mathrm{H}), 7.19-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.4(\mathrm{dd}, 1 \mathrm{H}, J=$ $1.6,8.8 \mathrm{~Hz}), 7.68(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 164.2(\mathrm{~d}, J=249 \mathrm{~Hz}), 153.9,144.6,134.8,131.5(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}), 126.6,126,123,116.4(\mathrm{~d}, J=22 \mathrm{~Hz}), 115.6$, 111.55, 44.9, 32, 20.1, 13.7; ms: m/z 347 (M +1, 100) 349 (M $+3,100)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrFN}_{2}$: C, $58.80 ; \mathrm{H}, 4.64 ; \mathrm{N}$, 8.07. Found C, 58.51 ; H, 4.68 ; N, 8.13.

1-Butyl-5-iodo-2-(4-fluorophenyl)-1H-benzimidazole (73). Purification, ethyl acetate-hexane (2:8), $\mathrm{mp} 125-126^{\circ} \mathrm{C}$, yield $88 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta: 0.86(\mathrm{t}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}$, $2 \mathrm{H}), 4.18(\mathrm{t}, 2 \mathrm{H}), 7.15-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~d}, 1 \mathrm{H}, J=8.8$ $\mathrm{Hz}), 7.69(\mathrm{~m}, 2 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 395(\mathrm{M}+1,100)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FIN}_{2}$: C, 51.79; H, 4.09; N, 7.11. Found C, 51.72; H, 4.24; N,7.20.

1-Butyl-5-nitro-2-(4-fluorophenyl)-1 H-benzimidazole (75). Purification, cc, ethyl acetate-hexane (3:7), mp 160-
$162^{\circ} \mathrm{C}$, yield $62 \% .{ }^{1} \mathrm{H}$ NMR $\delta: 0.86(\mathrm{t}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H})$, $1.77(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{t}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, 1 \mathrm{H}, J=9.2$ $\mathrm{Hz}), 7.71(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{dd}, 1 \mathrm{H}, J=2.4,9 \mathrm{~Hz}), 8.64(\mathrm{~d}, 1 \mathrm{H}$, $J=2.4 \mathrm{~Hz}) ; \mathrm{ms}: m / z 314(\mathrm{M}+1,100)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{2}: \mathrm{C}, 65.17 ; \mathrm{H}, 5.15 ; \mathrm{N}, 13.41$. Found C, 65.37; H, 5.20; N, 13.35.

1-Butyl-2-(pyridin-2-yl)-1H-benzimidazole-5-carbonitrile (78). Purification, cc, ethyl acetate-hexane (1:1), mp 117$119^{\circ} \mathrm{C}$, yield $38 \% .{ }^{1} \mathrm{H}$ NMR $\delta: 0.93(\mathrm{t}, 3 \mathrm{H}), 1.37(\mathrm{~m}, 2 \mathrm{H})$, $1.85(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{t}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=8.8$ $\mathrm{Hz}), 7.57(\mathrm{dd}, 1 \mathrm{H}, J=1.6,8.2 \mathrm{~Hz}), 7.88(\mathrm{td}, 1 \mathrm{H}, J=1.6,8$ $\mathrm{Hz}), 8.14(\mathrm{~d}, 1 \mathrm{H}, J=0.8 \mathrm{~Hz}), 8.39(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 8.72$ $(\mathrm{dd}, 1 \mathrm{H}, J=1,4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 152.5,150.0,149.0$, $142.3,139.5,137.2 .126 .5,125.3,125.2,124.6,120.1,111.4$, 105.8, 45.9, 32.3, 20.2, 13.8; ms: m/z 277 (M +1, 100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} 0.15 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$: C, 73.01; H, 5.98; N, 19.35. Found C, 73.42; H, 5.88; N, 19.12.

1-Butyl-2-(pyridin-3-yl)-1H-benzimidazole-5-carbonitrile (79). Purification, cc, ethyl acetate-hexane (2:1), mp 130$131^{\circ} \mathrm{C}$, yield $52 \% .{ }^{1} \mathrm{H}$ NMR $\delta: 0.85(\mathrm{t}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H})$, $1.77(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{t}, 2 \mathrm{H}), 7.44-7.59(\mathrm{~m}, 3 \mathrm{H}), 8.06(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 8.94(\mathrm{~d}$, $1 \mathrm{H}, J=1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 153.4,151.5,149.8,142.9$, 138.6, 137.1, 126.6, 126.3, 125.4, 123.9, 119.9, 111.6, 106.2, 45.2, 32.2, 20.1, 13.7; ms: m/z 277(M+1, 100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4}$: C, $73.87 ; \mathrm{H}, 5.84 ; \mathrm{N}, 20.27$. Found C, 73.76; H, 5.82; N, 20.01.

1-Butyl-2-(pyridin-4-yl)-1H-benzimidazole-5-carbonitrile (80). Purification, cc, chloroform-isopropanol (10:2), mp 135$137^{\circ} \mathrm{C}$, yield $47 \% .{ }^{1} \mathrm{H}$ NMR $\delta\left(\right.$ DMSO- $\left.d_{6}\right): 0.74(\mathrm{t}, 3 \mathrm{H}), 1.12$ $(\mathrm{m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{t}, 2 \mathrm{H}), 7.74(\mathrm{dd}, 1 \mathrm{H}, J=1,6,8.4$ Hz), 7.83 (dd, 2H, $J=1.6,4.4 \mathrm{~Hz}$), $7.95(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $8.3(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 8.82(\mathrm{dd}, 2 \mathrm{H}, J=1.6,4.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\right.$ DMSO- $\left.d_{6}\right): 153.5,151.1,142.6,139.4,137.8,127$, $125.4,124.1,120.4,113.6,105.4,44.9,31.9,19.8,13.9$; ms: $\mathrm{m} / \mathrm{z} 277(\mathrm{M}+1,100)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} .0 .5 \mathrm{HOH}: \mathrm{C}$, 71.55 ; H, 6.00; N, 19.63. Found C, 71.28 ; H, 5.73; N, 19.33.

1-Pentyl-2-phenyl-1H-benzimidazole-5-carbonitrile (83). Purification, cc, ethyl acetate-hexane (1:3), mp 124$125^{\circ} \mathrm{C}$, yield 17.5%. ${ }^{1} \mathrm{H}$ NMR $\delta: 0.83(\mathrm{t}, 3 \mathrm{H}), 1.24(\mathrm{~m}, 4 \mathrm{H})$, $1.8(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{t}, 2 \mathrm{H}), 7.47(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.56(\mathrm{~m}$, $4 \mathrm{H}), 7.7(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=0.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ : $156.4,142.9,138.5,130.6,129.8,129.4,129.1,126.2,125.2$, 120.1, 111.3, 105.7, 45.2, 29.6, 28.9, 22.2, 14.0; ms: m/z 290 (M $+1,100$). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3}: \mathrm{C}, 78.86 ; \mathrm{H}, 6.62 ; \mathrm{N}$, 14.52. Found C, $78.66 ; \mathrm{H}, 6.72$; N, 14.39.

1-Butyl-6-chloro-2-(4-fluorophenyl)-1H-benzimidazole-5carbonitrile (84). Purification, cc, ethyl acetate-hexane (1:4), $\mathrm{mp} 138^{\circ} \mathrm{C}$, yield $34 \% .{ }^{1} \mathrm{H}$ NMR $\delta: 0.89(\mathrm{t}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H})$, $1.77(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{t}, 2 \mathrm{H}), 7.27(\mathrm{t}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.7(\mathrm{~m}$, $2 \mathrm{H}), 8.1(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 164.1(\mathrm{~d}, J=251 \mathrm{~Hz}), 156.0$, $141.3,138.9,131.3(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 130.2,126.1,125.4(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}), 116.9,116.3(\mathrm{~d}, J=22 \mathrm{~Hz}), 111.7,107.0,45.0$, 31.7, 19.8, 13.4; ms: $m / z 328(\mathrm{M}+1,100) 330(\mathrm{M}+3,35)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClFN}_{3}$: C, $65.96 ; \mathrm{H}, 4.61 ; \mathrm{N}, 12.82$. Found C, 65.75; H, 4.59; N, 12.87.

1-[1-Butyl-2-(4-fluorophenyl)-1H-benzimidazol-5-yl]ethanone (90). Purification, cc, ethyl acetate-hexane (1:3), mp 75$77^{\circ} \mathrm{C}$, yield $21.5 \% .{ }^{1} \mathrm{H}$ NMR $\delta: 0.88(\mathrm{t}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H})$, $1.83(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 4.35(\mathrm{t}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}$, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.85(\mathrm{~m}, 2 \mathrm{H}), 8.11(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.46$
($\mathrm{s}, 1 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR $\delta: 198.1,163.9$ (d, $J=250 \mathrm{~Hz}$), 154.8, 142.8, 139.1, 132.5, $131.4(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 126.48(\mathrm{~d}, J=3.4 \mathrm{~Hz})$, 123.2, 121.8, $116.3(\mathrm{~d}, J=22 \mathrm{~Hz}), 110.3,44.9,32.1,26.9,20.1$, 13.7; ms: m/z 311 (M+1,100). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}: \mathrm{C}$, 73.53 ; H, 6.17; N, 9.03. Found C, 73.82; H, 6.53; N, 8.58.

1-Butyl-2-(4-fluorophenyl)-1H-benzimidazole-4-carbonitrile (91). Purification, cc, ethyl acetate-hexane (2:8), $\mathrm{mp} 83-84^{\circ} \mathrm{C}$, yield $44.5 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta: 0.87(\mathrm{t}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}$, $2 \mathrm{H}), 4.24(\mathrm{t}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.35$ (t, 1H), 7.63 (dd, 2H, J $=1.6,7.6 \mathrm{~Hz}), 7.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 164.1(\mathrm{~d}, J=250$ $\mathrm{Hz}), 155.2,144.1,136.1,131.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 127.5,126(\mathrm{~d}$, $J=3.1 \mathrm{~Hz}), 122.6,117.0,116.4(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 115.0$, 103.3, 45.1, 32.0, 20.0, 13.6; ms: m/z 294 (M +1,100). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FN}_{3}$: C, $73.70 ; \mathrm{H}, 5.50 ; \mathrm{N}, 14.33$. Found C, 74.19; H, 5.74; N, 13.94.

7-Bromo-5-(trifluoromethyl)-2-phenyl-1H-benzimidazole (92). Purification, cc, ethyl acetate-hexane (1:1), mp 179$181^{\circ} \mathrm{C}$, yield $59 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{DMSO}-d_{6}\right): 7.57(\mathrm{~m}, 3 \mathrm{H}), 7.72$ (s, 1H), 7.88 (s, 1H), 8.2 (d, 2H, $J=5.2 \mathrm{~Hz}$), 13.98 (br.s, $1 \mathrm{H})$; ms: $m / z 341(\mathrm{M}+1,100) 343$ ($\mathrm{M}+3,100$). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{BrF}_{3} \mathrm{~N}_{2}$: C, $49.29 ; \mathrm{H}, 2.36 ; \mathrm{N}, 8.21$. Found C, 49.1; H, 2.41; N, 8.17.

5,6-Difluoro-2-phenyl-1H-benzimidazole (93). Purification, cc, ethyl acetate-hexane (1:1), mp 213-215 ${ }^{\circ} \mathrm{C}$, yield 77%. ${ }^{1} \mathrm{H}$ NMR δ (DMSO- d_{6}): $7.43(\mathrm{~m}, 5 \mathrm{H}), 7.99(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz})$, 13.03 (br.s, 1H); ms: m/z 231 ($\mathrm{M}+1,100$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{~N}_{2}$: C, 67.82; H, 3.50; N, 12.17. Found C, 68.00; H, 3.57; N, 11.98.

5,6-Difluoro-2-(4-fluorophenyl)-1H-benzimidazole (94). Purification, cc, ethyl acetate-hexane (1:2), mp 207-209 ${ }^{\circ} \mathrm{C}$, yield $81 \% .{ }^{1} \mathrm{H}$ NMR $\delta\left(\right.$ DMSO- $\left.d_{6}\right): 7.4(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{t}, 2 \mathrm{H}), 8.17$ $(\mathrm{m}, 2 \mathrm{H})$; ms: $\mathrm{m} / \mathrm{z} 249$ ($\mathrm{M}+1,100$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{~N}_{2}$: C, 62.91; H, 2.84; N, 11.29. Found C, 63.04; H, 2.84; N, 11.28.

5,6,7-Trifluoro-2-phenyl-1H-benzimidazole (95). Purification, cryst., ethyl acetate-hexane, mp $215-216^{\circ} \mathrm{C}$, yield 77%. ${ }^{1} \mathrm{H}$ NMR δ (DMSO- d_{6}): 7.4-7.66 (m, 4H), 8.17 (dd, $2 \mathrm{H}, J=1.2$, $8 \mathrm{~Hz}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 249(\mathrm{M}+1,100)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{~N}_{2}$. 0.5 HOH: C, 60.70 ; H, 3.13; N, 10.89. Found C, 60.75 ; H, 3.06; N, 10.96.

5,6-Difluoro-2-(pyridin-4-yl)-1H-benzimidazole (96). Purification, cc, ethyl acetate-ethanol (95:5) $\mathrm{mp}>300^{\circ} \mathrm{C}$, yield 61.5%. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\right.$ DMSO- $\left.d_{6}\right): 7.71$ (br.s, 2 H$), 8.04(\mathrm{~m}, 2 \mathrm{H})$, 8.74 (m, 2H), 13.5 (br.s, 1H); ms: m/z 232 (M +1,100). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{~N}_{3}$: C, 62.34; H, 3.05; N, 18.17. Found C, 62.77; H, 3.29; N, 17.65.

2-[4-(Benzyloxy)phenyl]-5,6-difluoro-1 H-benzimidazole (97). Purification, cc, ethyl acetate-hexane (1:2), mp 215$217^{\circ} \mathrm{C}$, yield $33.7 \% .{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{DMSO}-d_{6}\right): 5.17(\mathrm{~s}, 2 \mathrm{H}), 7.16$ $(\mathrm{d}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}), 7.32-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.64(\mathrm{~m}, 1 \mathrm{H}), 8.05(\mathrm{~d}$, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 12.98(\mathrm{~s}, 1 \mathrm{H})$; ms: m/z $337(\mathrm{M}+1,100)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}$. $0.1 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$. $0.25 \mathrm{HOH}: \mathrm{C}, 70.07$; H, 4.41; N, 8.01. Found C, 70.04; H, 4.13; N, 8.14.

5,6-Dichloro-2-(4-fluorophenyl)-1H-benzimidazole (99). Purification, cryst., ethyl acetate-hexane, $\mathrm{mp} 278-280^{\circ} \mathrm{C}$, yield 69.5%. ${ }^{1} \mathrm{H}$ NMR $\delta: 7.19(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H})$, 8.17 (m, 2H); ms: m/z $281(\mathrm{M}+1,100) 283(\mathrm{M}+3,63) 285$ (M $+5,13$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{FN}_{2}: \mathrm{C}, 55.54 ; \mathrm{H}, 2.51$; N, 9.97. Found C, 55.52; H, 2.46; N, 9.92.

4,7-Dichloro-2-(4-fluorophenyl)-1H-benzimidazole (100). Purification, cc, ethyl acetate-hexane (2:8), mp $242^{\circ} \mathrm{C}$, yield
$71.4 \% .{ }^{1} \mathrm{H}$ NMR $\delta\left(\right.$ DMSO- $\left.d_{6}\right): 7.31$ (s, 2H), 7.43 (t, 2H), $8.38(\mathrm{~m}, 2 \mathrm{H}), 13.48$ (br.s, 1H); ms: m/z 281 ($\mathrm{M}+1,100$) 283 $(\mathrm{M}+3,72) 285(\mathrm{M}+5,15)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{FN}_{2}$. $0.25 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$. $0.4 \mathrm{HOH}: \mathrm{C}, 54.18 ; \mathrm{H}, 3.18$; N, 9.03. Found C, 54.03; H, 3.07; N, 9.07.

5,6-Dibromo-2-(4-fluorophenyl)-1H-benzimidazole (101). Purification, cryst., ethanol, $\mathrm{mp} 273-275^{\circ} \mathrm{C}$, yield $68.4 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta\left(\right.$ DMSO- $\left.d_{6}\right): 7.4(\mathrm{~m}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 2 \mathrm{H}), 8.2$ (m, 2H); ms: m/z 369 (M +1, 50), 371 ($\mathrm{M}+3,100$), 373 (M $+5,48)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{FN}_{2} 0.25 \mathrm{HOH}: \mathrm{C}, 41.69$; H, 2.02; N, 7.48. Found C, 41.50; H, 1.99; N, 7.61 .

2-(4-Fluorophenyl)-1H-benzimidazole-5,6-dicarbonitrile (102). Purification, cc, (1) ethyl acetate-hexane (1:1), (2) ethyl acetate, (3) ethyl acetate-ethanol (95:5), $\mathrm{mp}>300^{\circ} \mathrm{C}$, yield $59.8 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{DMSO}-d_{6}\right): 7.48(\mathrm{t}, 2 \mathrm{H}), 8.31(\mathrm{~m}, 2 \mathrm{H})$, 8.44 (s, 2H); ms: m/z 263 ($\mathrm{M}+1,100$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{FN}_{4} .0 .75 \mathrm{HOH}: \mathrm{C}, 65.33 ; \mathrm{H}, 3.11$; N, 20.32. Found C, 64.94; H, 3.76; N, 20.53.

1-Butyl-5,7-dichloro-2-(4-fluorophenyl)-1H-benzimidazole (104). Purification, cc, (1) dichloro-methane-hexane (2:8) (2) ethyl acetate-ethanol ($1: 9$) $\mathrm{mp} 58^{\circ} \mathrm{C}$, yield 27.3%. ${ }^{1} \mathrm{H}$ NMR δ : $0.81(\mathrm{t}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{t}, 2 \mathrm{H}), 7.25$ $(\mathrm{m}, 3 \mathrm{H}), 7.65(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 163.8(\mathrm{~d}, J=250 \mathrm{~Hz})$, $155.8,145.6,131.6(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 130.1,128.0,126.0(\mathrm{~d}, J$ $=3.8 \mathrm{~Hz}), 124.5,118.6,116,8,116.1(\mathrm{~d}, J=22 \mathrm{~Hz}), 45.7$, 34.0, 19.4, 13.4; ms: m/z 337 ($\mathrm{M}+1,100$) $339(\mathrm{M}+3,60)$ $341(\mathrm{M}+5,11)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{FN}_{2}: \mathrm{C}, 60.55 ; \mathrm{H}$, 4.48; N, 8.31. Found C, 60.14; H, 4.44; N, 8.32.

1-Butyl-5-trimethylsilanylethylnyl-2-(4-fluorophenyl)-1Hbenzimidazole (74a). To the mixture of $73(0.69 \mathrm{mmol}, 0.272$ g) and (trimethylsilyl)acetylene (0.081 g) in N, N-dimethyl formamide (1 mL) and triethylamine $(1 \mathrm{~mL}) 10 \mathrm{mg}$ of bis(tri-phenyl-phosphine)palladium (II) chloride and 2 mg of cop$\operatorname{per}(\mathrm{I})$ iodide were added, and the mixture was stirred for 4.5 h at $45^{\circ} \mathrm{C}$. The solvent was then removed in vacuo and the resulting residue was dissolved in acetonitrile and ether and washed with water. The solvent was removed in vacuo. The crude product was used without purification, yield 0.100 g . ms: $m / z 365$ ($\mathrm{M}+1,100$).

1-Butyl-5-ethynyl-2-(4-fluorophenyl)-1H-benzimidazole (74). 0.1 g (0.27 mmol) of 74a and $1 N$ potassium hydroxide $(0.5 \mathrm{~mL})$ was added 2.5 mL methanol. The mixture was stirred for 1.5 h at $25^{\circ} \mathrm{C}$. The solvent was then removed in vacuo. The residue was purified by cc chloroform-ethyl acetate (20:0.5), mp $114-115^{\circ} \mathrm{C}$, yield 31%. ${ }^{1} \mathrm{H}$ NMR $\delta: 0.86(\mathrm{t}, 3 \mathrm{H})$, $1.26(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{t}, 2 \mathrm{H}), 7.24$ $(\mathrm{m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.45(\mathrm{dd}, 1 \mathrm{H}, J=1.6,8.2$ Hz), $7.69(\mathrm{~m}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 163.7(\mathrm{~d}, J=$ $249 \mathrm{~Hz}), 153.9,142.8,135.9,131.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 126.9$, $126.5(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 124.1,116.0,116.02(\mathrm{~d}, J=22.1 \mathrm{~Hz})$, 110.2, 84.4, 75.7, 44.6, 31.9, 19.9, 13.5; ms: m/z 293 (M +1, 100). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FN}_{2}$: C, $78.05 ; \mathrm{H}, 5.86 ; \mathrm{N}, 9.58$. Found C, 77.69; H, 5.88; N, 9.46.

5-Amino-1-butyl-2-(4-fluorophenyl)-1H-benzimidazole HCl (76). Compound 75 ($0.24 \mathrm{~g}, 0.767 \mathrm{mmol})$, tin(II) chloride dihydrate ($0.375 \mathrm{~g}, 1.66 \mathrm{mmol}$), a granule tin in the mixture of ethanol (2 mL), hydrochloric acid (2 mL), and 1 mL water were stirred at $50^{\circ} \mathrm{C}$ for 2 h . Then water was added, pH was rendered basic by addition of dilute sodium hydroxide solution, extracted with ethyl acetate. The slurry was filtered on a Buchner, the resulting solid was washed with ethyl acetate.

The combined organic phases was concentrated, crystallization of crude product from ethanolic hydrogen chloride gave 76, mp $265-267^{\circ} \mathrm{C}$, yield $57.1 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta\left(\right.$ DMSO- $\left.d_{6}\right): 0.75$ (t, $3 \mathrm{H}), 1.16(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{t}, 2 \mathrm{H}), 7.29(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.4 \mathrm{~Hz}), 7.55(\mathrm{~m}, 3 \mathrm{H}), 7.95(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{ms}: m / z 284(\mathrm{M}+1$, 100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}_{3}$. $\mathrm{HCl}: \mathrm{C}, 63.85 ; \mathrm{H}, 5.99$; N, 13.14. Found C, 63.59; H, 5.96; N, 12.98.

5-Azido-1-butyl-2-(4-fluorophenyl)-1H-benzimidazole (77). A cooled solution of $76(0.16 \mathrm{~g}, 0.5 \mathrm{mmol})$ was dissolved in 2 mL of aqueous 9 M HCl and slowly a sodium nitrite aqueous solution ($0.76 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added. The reaction temperature was not allowed to rise above $5^{\circ} \mathrm{C}$. The mixture was stirred in an ice bath for 1 h . A solution of 0.6 mL of sodium azide $(1.7 \mathrm{mmol})$ and sodium acetate $(0.25 \mathrm{~g})$ was added at $0^{\circ} \mathrm{C}$ and stirred for 1 h . Then, the mixture was allowed to warm to room temperature and stirred for 1 h . Potassium carbonate is added to neutralize the mixture and extracted with ethyl acetate. The solvent was then removed in vacuo, the residue was chromatographed by using ethyl ace-tate-hexane ($2: 8$), $\mathrm{mp} 85-87^{\circ} \mathrm{C}$, yield 25.2%. ${ }^{1} \mathrm{H}$ NMR $\delta: 0.87$ $(\mathrm{t}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{t}, 2 \mathrm{H}), 6.99(\mathrm{dd}, 1 \mathrm{H}$, $J=2,8.6 \mathrm{~Hz}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.46$ (d, 1H, $J=2 \mathrm{~Hz}$), $7.69(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 163.9(\mathrm{~d}, J=$ $249 \mathrm{~Hz}), 154.2,144.2,135.2,133.6,131(\mathrm{~d}, J=8.2 \mathrm{~Hz})$, $126.8,116.3(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 115,111.3,109.9,44.9,32.1$, 20.1, 13.7; ms: m/z $310(\mathrm{M}+1,100)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FN}_{5}$: C, 66.00; H, 5.21; N, 22.64. Found C, 66.09; H, 5.28; N, 22.32.

N-[2-(butylamino)-5-cyanophenyl]pyridazine-4-carboxamide (81a). A mixture of 4-pyridazinecarboxylic acid (0.11 $\mathrm{g}, 0.89 \mathrm{mmol}$), triethylamine (0.41 mL), 3-amino-4-butylaminobenzonitrile ($0.18 \mathrm{~g}, 0.95 \mathrm{mmol}$), and O-(Benzotriazol-1-yl)$N, N, N^{\prime}, N^{\prime}$-tetramethyl-uronium hexafluorophosphate (HBTU) $(0.366 \mathrm{~g}, 0.96 \mathrm{mmol})$ in N, N-dimethylformamide (1 mL) was stirred at room temperature for 20 h , water was added to the reaction mixture, then extracted with ethyl acetate and evaporated. The residue was purified by cc ($4: 1$ toluene/methanol), to give 81a as a white solid ($6.75 \mathrm{~g}, 71 \%$); mp $214-215^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta: 0.89(\mathrm{t}, 3 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H})$, $3.15(\mathrm{q}, 2 \mathrm{H}), 6.38(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}$, deuterium oxideexchangeable), $6.76(\mathrm{~d}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 8.14(\mathrm{~m}, 1 \mathrm{H}), 9.51$ (d, $1 \mathrm{H}, J=5.2 \mathrm{~Hz}$), $9.68(\mathrm{~s}, 1 \mathrm{H}), 10.1(\mathrm{~s}, 1 \mathrm{H}$, deuterium ox-ide-exchangeable), ms: $m / z 296(\mathrm{M}+1,100)$.

1-Butyl-2-(pyridazin-4-yl)-1H-benzimidazole-5-carbonitrile (81). $0.1 \mathrm{~g}(0.33 \mathrm{mmol})$ of 81a and 0.1 g of sodium acetate was dissolved in 1 mL glacial acetic acid. The mixture was stirred for 4.5 h at $100^{\circ} \mathrm{C}$. Then poured into ice-water and filtered. The precipitate was purified by silicagel cc (ethyl ace-tate-ethanol, 10:0.1), mp $148^{\circ} \mathrm{C}$, yield $38 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta: 0.94$ $(\mathrm{t}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{t}, 2 \mathrm{H}), 7.57(\mathrm{~d}, 1 \mathrm{H}$, $J=8 \mathrm{~Hz}), 7.66(\mathrm{dd}, 1 \mathrm{H}, J=1.6,8.6 \mathrm{~Hz}), 7.91(\mathrm{dd}, 1 \mathrm{H}, J=$ $2.4,5.6 \mathrm{~Hz}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 9.47(\mathrm{dd}, 1 \mathrm{H}, J=0.8,5.8 \mathrm{~Hz}), 9.63$ (m, 1H); ms: m/z $278(\mathrm{M}+1,100)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5}$: C, 69.30 ; H, 5.45 ; N, 25.25 . Found C, 69.81 ; H, 5.80 ; N, not available.
N-[2-(butylamino)-5-cyanophenyl]pyrazine-2-carboxamide ($82 \boldsymbol{a}$). $0.124 \mathrm{~g}(1 \mathrm{mmol})$ of pyrazinecarboxylic acid, thionyl chloride (2 mL), and toluene (5 mL) were heated at reflux for 4 h . After removal of the solvent, a mixture of 3-amino-4butylaminobenzonitrile $0.189 \mathrm{~g}(1 \mathrm{mmol})$, dichloromethane $(5 \mathrm{~mL})$, and pyridine $(0.5 \mathrm{~mL})$ were added, the residue and the
whole was stirred and reflux overnight. The reaction mixture was evaporated, washed with sodium carbonate solution (5\%), extracted with ethyl acetate, and washed with water. The organic layer was dried over sodium sulfate, and evaporated. The residue was purified by silicagel cc (ethyl acetate-hexane, 50%), mp $130-133^{\circ} \mathrm{C}$, yield $0.11 \mathrm{~g}, 37.28 \%$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 0.87(\mathrm{t}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 3.12$ $(\mathrm{q}, 2 \mathrm{H}), 6.16(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}$, deuterium oxide-exchangeable), $6.74(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 8.84(\mathrm{~m}, 1 \mathrm{H}), 8.91(\mathrm{~d}, 1 \mathrm{H}$, $J=2.8 \mathrm{~Hz}), 9.23(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 10.16(\mathrm{~s}, 1 \mathrm{H}$, deuterium oxide-exchangeable); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 163.4,148.5$, $148.2,145.7,144.6,143.9,132.7,131.6,122.86,120.7$, $111.25,95.8,42.69,31.1,20.3,14.4 ; \mathrm{ms}: m / z 296$ ($\mathrm{M}+1$, 100).

1-Butyl-2-(pyrazin-2-yl)-1H-benzimidazole-5-carbonitrile (82). $0.1 \mathrm{~g}(0.33 \mathrm{mmol})$ of $\mathbf{8 2} \mathbf{a}$ and 0.1 g of sodium acetate was dissolved in 1 mL glacial acetic acid. The mixture was stirred for 4.5 h at $100^{\circ} \mathrm{C}$. Then poured into ice-water and filtered. The precipitate was purified by silicagel cc (ethyl ace-tate-hexane $1: 1$), $\mathrm{mp} 174-175^{\circ} \mathrm{C}$, yield 33%. ${ }^{1} \mathrm{H}$ NMR δ (DMSO- d_{6}): $0.87(\mathrm{t}, 3 \mathrm{H}), 1.3(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{t}$, $2 \mathrm{H}), 7.77(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.98(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.37$ (s, 1H), $8.84(\mathrm{dd}, 2 \mathrm{H}, J=2.4,10.2 \mathrm{~Hz}), 9.51(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ (DMSO- d_{6}): $150.3,146.1,145.9,145.5,144.3,142.1$, $139.9,127.3,125.6,120.3,113.5,105.6,45.7,32.4,20.0,14.1$; ms: m/z $278(\mathrm{M}+1,100)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5}$: C, 69.30; H, 5.45; N, 25.25. Found C, 69.00; H, 5.44; N, 24.84.

1-Butyl-2-(4-fluorophenyl)-1H-benzimidazol-5-carboxaldehyde (85). To a solution of $\mathbf{I}(0.293 \mathrm{~g}, 1 \mathrm{mmol})$ in dry dichloromethane (20 mL), 3 mL of DIBAL (1.0 M solution in dichloromethane) was added and the mixture was heated at reflux for 3 h under nitrogen atmosphere. Cool dilute sulfuric acid (15 mL) was added and stirred overnight, dichloromethane was removed and the residue was neutralized with dilute sodium carbonate solution, then extracted with ethyl acetate and evaporated. The residue was purified by silicagel cc (ethyl acetate-hexane $2: 3$) $\mathrm{mp} 85-86^{\circ} \mathrm{C}$, yield 31.5%. ${ }^{1} \mathrm{H}$ NMR δ : $0.885(\mathrm{t}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{t}, 2 \mathrm{H}), 7.26$ $(\mathrm{m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.9(\mathrm{dd}, 1 \mathrm{H}$, $J=1.2,8.8 \mathrm{~Hz}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 10.1(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta:$ 192.3, $164.05(\mathrm{~d}, J=250 \mathrm{~Hz}$), 155.2, 143.1, 140.1, 132.2, $131.5(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 126.3(\mathrm{~d}, J=1.1 \mathrm{~Hz}), 124.3,123.45$, $116.3(\mathrm{~d}, J=22 \mathrm{~Hz}), 110.9,45.1,32.1,20.1,13.7$; ms: m / z 297 (M +1, 100). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}: \mathrm{C}, 72.96$; H , 5.78; N, 9.45. Found C, 73.05; H, 6.01; N, 9.10.

1-Butyl-2-(4-fluorophenyl)-1H-benzimidazole-5-carbaldehyde O-methyloxime (86). A solution of $85(0.1 \mathrm{~g}, 0.33$ mmol) and of methoxylamine hydrochloride ($0.028 \mathrm{~g}, 0.33$ mmol) in 1 mL of pyridine and 3 mL of absolute ethanol was refluxed for 3 h . Solvent was removed in vacuo, water was added and extracted with ethyl acetate and evaporated. The residue was crystallized from ethanol, $\mathrm{mp} 104-105^{\circ} \mathrm{C}$, yield $38.3 \%{ }^{1} \mathrm{H}$ NMR $\delta\left(\right.$ DMSO- $\left.d_{6}\right): 0.78(\mathrm{t}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 2 \mathrm{H})$, $1.67(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.32(\mathrm{t}, 2 \mathrm{H}), 7.45(\mathrm{t}, 2 \mathrm{H}), 7.65(\mathrm{dd}$, $1 \mathrm{H}, J=1.4,8.5 \mathrm{~Hz}), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.86(\mathrm{~m}, 2 \mathrm{H})$, $7.91(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H})$; ms: m/z $326(\mathrm{M}+1,100)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}: \mathrm{C}, 70.12 ; \mathrm{H}, 6.20 ; \mathrm{N}, 12.92$. Found C, 70.34; H, 6.30; N, 12.61.

1-Butyl-2-(4-fluorophenyl)- N^{\prime}-hydroxy-1H-benzimidazole-5carboximidamide (87). To a stirring solution of compound I $(1 \mathrm{mmol}, 0.293 \mathrm{~g})$ in ethanol (50 mL) was added hydroxyl-
amine hydrochloride ($1.43 \mathrm{mmol}, 0.1 \mathrm{~g}$) followed by N, N,-diisopropylethylamine ($1.43 \mathrm{mmol}, 0.184 \mathrm{~g}$). The solution was heated to reflux and after 6 h , it was concentrated. Residue was washed with water and crystallized from ethanol, mp $230-233^{\circ} \mathrm{C}$, yield $66 \% .{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{DMSO}-d_{6}\right): 0.72(\mathrm{t}, 3 \mathrm{H})$, $1.1(\mathrm{~m}, 2 \mathrm{H}), 1.6(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{t}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H}), 7.40(\mathrm{t}$, $2 \mathrm{H}), 7.62(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 9.54(\mathrm{~s}, 1 \mathrm{H})$; $\mathrm{ms}: m / z 327$ (M +1, 100). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FN}_{4} \mathrm{O} .0 .4$ HOH. $0.25 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}: \mathrm{C}, 64.38 ; \mathrm{H}, 6.22$; N, 16.23. Found C, 64.46; H, 5.79; N, 15.93.

1-Butyl-2-(4-fluorophenyl)-5-(5-methyl-1,2,4-oxadiazol-3-yl)-1H-benzimidazole (88). To a stirring solution of 87 (0.070 g , 0.214 mmol) in 1,2-dichloroethane was added acetic anhydride $(1 \mathrm{~g}, 0.97 \mathrm{~mL}, 10.2 \mathrm{mmol})$ and then the mixture was heated to $75^{\circ} \mathrm{C}$. After 10 h , the reaction was cooled to room temperature and concentrated under reduced pressure. Water was added and the mixture was made alkaline with dilute sodium carbonate solution, then extracted with ethyl acetate. The organic layer was washed with water and evaporated, the residue was purified by cc eluting with first ethyl acetate-hexane 50%, later ethyl ace-tate-ethanol (99:1) to give $88(0.025 \mathrm{~g}, 33.3 \%)$, mp $120-122^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR $\delta: 0.86(\mathrm{t}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~s}$, $3 \mathrm{H}), 4.22(\mathrm{t}, 2 \mathrm{H}), 7.23(\mathrm{t}, 2 \mathrm{H}), 7.47(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.71(\mathrm{~m}$, $2 \mathrm{H}), 8.03(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.51(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{ms}: m / z 351(\mathrm{M}+1$, 100). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FN}_{4} \mathrm{O} \cdot 0.1 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}: \mathrm{C}, 68.21$; H , 5.56; N, 15.59. Found C, 68.35; H, 5.54; N, 15.36.

2-(4-Fluorophenyl)-1-propyl-5-(1H-tetrazol-5-yl)-1H-benzimidazole (89). A mixture of $89 \mathrm{a}(0.1 \mathrm{~g}, 0.358 \mathrm{mmol})$, sodium azide $(0.11 \mathrm{~g}, 1.7 \mathrm{mmol})$, and ammonium chloride $(0.11 \mathrm{~g}$, $2.056 \mathrm{mmol})$ in N, N-dimethylformamide (1 mL) was stirred at $145^{\circ} \mathrm{C}$ for 24 h . After cooling, the mixture was diluted with water, acidified to pH 3 with dilute HCl and extracted with ethyl acetate. The organic layer was washed with water and evaporated. The residue was purified by c.c. eluting with first ethyl acetate, later ethyl acetate-ethanol (9:1) to give $\mathbf{8 9}$, $\mathbf{m p}$ $126-128^{\circ} \mathrm{C}$, yield 19.1%. ${ }^{1} \mathrm{H}$ NMR $\delta: 0.68$ (t, 3H), 1.64 (m, $2 \mathrm{H}), 4.26(\mathrm{t}, 2 \mathrm{H}), 7.39(\mathrm{t}, 2 \mathrm{H}), 7.83(\mathrm{~m}, 3 \mathrm{H}), 7.97(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 8.32(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{DMSO}-d_{6}\right): 163.7(\mathrm{~d}, J=$ $250 \mathrm{~Hz}), 163.15,156.7,154.5,143.1,138.0,132.3(\mathrm{~d}, J=9.2$ $\mathrm{Hz}), 127.1,122.2,119.2,118.5,116.7(\mathrm{~d}, ~ J=22 \mathrm{~Hz}), 112.7$, 46.4, 23.1, 11.4; ms: m/z 323 ($\mathrm{M}+1,100$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FN}_{6}$. HOH: C, 59.99; H, 5.03; N, 24.69. Found C, 60.03; H, 5.07; N, 24.41.

5,6-Difluoro-2-(4-hydroxyphenyl)-1H-benzimidazole (98). Compound $97(0.12 \mathrm{~g}, 0.357 \mathrm{mmol})$ in ethanol (10 mL) were reduced by hydrogenation using 40 psi of H_{2} and 10% Pd-C until cessation of hydrogen uptake. The catalyst was filtered off on a bed of Celite, washed with ethanol, and the filtrate was concentrated. The residue was crystallized from ethanol, mp $286-287^{\circ} \mathrm{C}$, yield 43.2%. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\right.$ DMSO- $\left.d_{6}\right)$: $6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.47$ and $7.6(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 7.94(\mathrm{~d}, 2 \mathrm{H}$, $J=8.8 \mathrm{~Hz}), 10.0(\mathrm{~s}, 1 \mathrm{H}), 12.87(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 247(\mathrm{M}$ $+1,100$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O} \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$: C, 62.07; H, 4.17; N, 9.65. Found C, 62.55; H, 4.29; N, 9.37.

General procedure for synthesis of $103,105-107$. A mixture of 99-102 (1 mmol), n-butylbromide $(1 \mathrm{mmol})$, and sodium hydride ($95 \%, 1.25 \mathrm{mmol}$) in N, N-dimethylformamide $(1 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was poured into water and extracted with ethyl acetate. The extract was washed with water, dried over sodium sulfate, and concentrated in vacuo.

1-Butyl-4,7-dichloro-2-(4-fluorophenyl)-1H-benzimidazole (103). Purification, cc, ethyl acetate-hexane (2:8), mp 93$94^{\circ} \mathrm{C}$, yield $52.5 \% .{ }^{1} \mathrm{H}$ NMR $\delta: 0.81(\mathrm{t}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H})$, $1.74(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{t}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 4 \mathrm{H}), 7.67(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} /$ z $337(\mathrm{M}+1,100) 339(\mathrm{M}+3,63)$, $341(\mathrm{M}+5,13)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{FN}_{2}$: C, $60.54 ; \mathrm{H}, 4.48 ; \mathrm{N}, 8.31$. Found C, 60.73; H, 4.58; N, 8.29.

1-Butyl-5,6-dichloro-2-(4-fluorophenyl)-1H-benzimidazole (105). Purification, cc, ethyl acetate-hexane (1:3), mp 85$86^{\circ} \mathrm{C}$, yield $70.5 \% .{ }^{1} \mathrm{H}$ NMR $\delta: 0.88(\mathrm{t}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H})$, $1.76(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{t}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.68$ $(\mathrm{m}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{ms}: m / \mathrm{z} 337(\mathrm{M}+1,100) 339(\mathrm{M}+3$, 57). 341 ($\mathrm{M}+5,13$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{FN}_{2}$: C, 60.55; H, 4.48; N, 8.31. Found C, 60.5; H, 4.39; N, 8.31.

1-Butyl-5,6-dibromo-2-(4-fluorophenyl)-1 H-benzimidazole (106). Purification, cryst., ethanol, $\mathrm{mp} 100-101^{\circ} \mathrm{C}$, yield $72.8 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta: 0.87(\mathrm{t}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H})$, $4.15(\mathrm{t}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~m}, 3 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta: 165.0,162.6,154.5,143.4,135.8,131.3,131.2$, $126.0,125.9,124.3,117.9,117.6,116.2,116.0,114.6,44.8$, 31.7, 19.8, 13.4. ms: $m / z 425(\mathrm{M}+1,51), 427(\mathrm{M}+3,100)$, 429 (M +5, 50). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{FN}_{2}$: C, 47.92; H, 3.55; N, 6.57. Found C, 47.52; H, 3.45; N, 6.73.

1-Butyl-2-(4-fluorophenyl)-1H-benzimidazole-5,6-dicarbonitrile (107). Purification, cc, ethyl acetate-hexane (3:7), mp $158-160^{\circ} \mathrm{C}$, yield $36.6 \% .{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{DMSO}-d_{6}\right): 0.76(\mathrm{t}, 3 \mathrm{H})$, $1.14(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 4.4(\mathrm{t}, 2 \mathrm{H}), 7.49(\mathrm{t}, 2 \mathrm{H}), 7.91(\mathrm{~m}$, $2 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z} 319(\mathrm{M}+1,100)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{FN}_{4} .0 .15 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$: C, $71.0 ; \mathrm{H}, 4.92$; N , 16.89. Found C, 71.16; H, 4.95; N, 16.78.

1-(4-Fluorophenyl)ethanone (4-bromophenyl) hydrazone (108a). A mixture of 4-bromo-phenylhidrazine $\mathrm{HCl}(1.12 \mathrm{~g}, 5$ $\mathrm{mmol}), 4^{\prime}$-fluoroacetophenone $(0.69 \mathrm{~g}, 5 \mathrm{mmol})$, and triethylamine (1 mL) in ethanol (10 mL) was heated to $80^{\circ} \mathrm{C}$ for 3 h . The mixture was allowed to cool and water was added. The resultant precipitate was filtered and dried under vacuum, yield $1.34 \mathrm{~g}, 87.3 \%$.

5-Bromo-2-(4-fluorophenyl)-1H-indole (108). Compound 108a ($0.92 \mathrm{~g}, 3 \mathrm{mmol}$) in polyphosphoric acid (25 g) was heated to $120^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, the resultant reaction solution was poured into a mixture of ice and water, and the solution was basified with 10% sodium hydroxide solution. The resultant precipitate was filtered, washed with water, crystallized from ethanol, mp $178-179^{\circ} \mathrm{C}$, ref. 28 ; $180^{\circ} \mathrm{C}$, yield $85 \% .{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{DMSO}-d_{6}\right): 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.21$ $(\mathrm{dd}, 1 \mathrm{H}, J=2,8.8 \mathrm{~Hz}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~m}$, 2H), $11.77(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{DMSO}-d_{6}\right): 162.9,160.4$, $138.1,135.6,130.4,128.2,127.2,127.1,123.8,121.9,115.9$, 115.7, 113.1, 111.7, 98.1; ms [ESI(-)]: m/z 288 (M -1, 100) 290 (M +2, -1, 100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrFN}: \mathrm{C}, 57.95$; H, 3.13; N, 4.83. Found C, 57.73; H, 3.04s; N, 4.98.

5-Bromo-2-(4-fluorophenyl)-1-propyl-1H-indole (109). A solution of $\mathbf{1 0 8}(0.58 \mathrm{~g}, 2 \mathrm{mmol})$ and sodium hydride ($0.072 \mathrm{~g}, 3$ mmol) was stirred in dry N, N-dimethylformamide (3 mL) at $0^{\circ} \mathrm{C}$ for 30 min , and then propyl bromide $(0.30 \mathrm{~g}, 2.5 \mathrm{mmol})$ was added dropwise and the resulting mixture was stirred at room temperature for 16 h and then poured into ice-water and extracted with ethyl acetate (3×10). The organic phase was washed with brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-hexane, yield $63.3 \%, \operatorname{mp} 55-56{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ (DMSO-
$\left.d_{6}\right): 0.63(\mathrm{t}, 3 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{t}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 7.28$ $(\mathrm{dd}, 1 \mathrm{H}, J=2,8.4 \mathrm{~Hz}), 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz})$; ms: $m / z 332(\mathrm{M}+1,100)$ 334 ($\mathrm{M}+3,100$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrFN}: \mathrm{C}, 61.46 ; \mathrm{H}$, 4.55; N, 4.22. Found C, 61.43; H, 4.56; N, 4.38 .

5-Cyano-2-(4-fluorophenyl)-1-propyl-1H-indole (110). A mixture of 109 ($0.332 \mathrm{~g}, 1 \mathrm{mmol}$) and cuprous cyanide (0.270 $\mathrm{g}, 3 \mathrm{mmol}$) in 5 mL of 1-methyl-2-pyrrolidinone was heated at $120^{\circ} \mathrm{C}$ for 6 h in a Parr Digestion Bomb. The mixture was cooled to room temperature and washed with 10 mL water, by stirring with water for 15 min and decanting the water layer. The washed reaction mixture was mixture with 8 mL of ethylenediamine and 5 mL of water. The resultant precipitate was filtered, washed with 15 mL of 10% sodium cyanide solution then water and dried. Crude product was purified by using cc (ethyl acetate-hexane 1:3), mp $141-143^{\circ} \mathrm{C}$, yield 23.7%. ${ }^{1} \mathrm{H}$ NMR δ (DMSO- d_{6}): $0.63(\mathrm{t}, 3 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{t}, 2 \mathrm{H}), 6.67(\mathrm{~s}$, $1 \mathrm{H}), 7.37$ (t, 2 H), 7.52 (dd, $1 \mathrm{H}, J=1.4,8.6 \mathrm{~Hz}$), $7.61(\mathrm{~m}, 2 \mathrm{H})$, $7.77(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.09(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}) ; \mathrm{ms}: m / z 279$ ($\mathrm{M}+1,100$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}_{2} .0 .15 \mathrm{HOH}: \mathrm{C}, 76.93$; H, 5.49; N, 9.96. Found C, 77.04; H, 5.76; N, 9.47.

Acknowledgments. This work was supported by TUBITAK Project no: 106S202 (SBAG-3450). Central Laboratory of Pharmacy, Faculty of Ankara University provided support for acquisition of the NMR, mass spectrometer, and elemental analyzer used in this work.

REFERENCES AND NOTES

[1] Göker, H.; Kus, C.; Boykin, D. W.; Yildiz, S.; Altanlar, N. Bioorg Med Chem 2002, 10, 2589.
[2] Aar, E. M.; Groot, M.; Bouwman, T.; Bijloo, G. J.; Commandeur, J. N. M.; Vermeulen, P. E. N. Chem Res Toxicol 1997, 10, 439.
[3] Heppolette, R. L.; Miller, J. J Am Chem Soc 1953, 75, 4265.
[4] Mickelson, J. W.; Jacobsen, E. J.; Carter, D. B.; Im, K. H.; Im, W. B.; Schreur, P.; Sethy, V. H.; Tang, A. H.; McGee, J. E.; Petke, J. D. J Med Chem 1996, 39, 4654.
[5] Bromidge, S. V.; Moss, S. F. U.S. Pat. 6,316,450 (2001).
[6] Showalter, H. D. H.; Bridges, A. J.; Zhou, H.; Sercel, A. D.; McMichael, A.; Fry, D. W. J Med Chem 1999, 42, 5464.
[7] Grivsky, E. M. U.S. Pat. 3,742,014 (1973).
[8] Mackman, R. L.; Hui, H. C.; Bretenbucher, J. G.; Katz, B. A.; Luong, C.; Martelli, A.; McGee, D.; Radika, K.; Sendzik, M.; Spencer, J. R.; Sprengeler, P. A.; Tario, J.; Verner, E.; Wang, J. Bioorg Med Chem Lett 2002, 12, 2019.
[9] Kudo, N.; Furuta, S.; Sato, K. Chem Pharm Bull 1996, 44, 1663.
[10] White, W. N.; Klink, J. R. J Org Chem 1977, 42, 166.
[11] Feitelson, B. N.; Mamalis, P.; Moualim, R. J.; Petrow, V.; Stephenson, O.; Sturgeon, B. J Chem Soc 1952, 2389.
[12] Hori, M.; Suzuki, K.; Yamamoto, T.; Nakajima, F.; Ozaki, A.; Ohtaka, H. Chem Pharm Bull 1993, 41, 1832.
[13] Makosza, M.; Bialecki, M. J Org Chem 1998, 63, 4878.
[14] Oberwil, E. H.; Binningen, F. P. G.; Bottmingen, A. S. U.S. Pat. 4,141,982 (1979).
[15] Willitzer, H.; Brauniger, H.; Engelmann, D.; Krebs, W.; Ozegowski, W.; Tonew, M. Pharmazie 1978, 33, 30.
[16] Huwe, J. K.; Feil, V. J.; Larsen, G. L.; Wiener, C. Chemosphere 1998, 37, 1885.
[17] Macleod, L. A.; Pfund, C. M.; Kilpatrick, M. L. J Am Chem 1922, 46, 2260.
[18] McQuaid, L. A.; Smith, E. C. R.; South, K. K.; Mitch, C. H.; Schoepp, D. D.; True, R. A.; Calligaro, D. O.; O'Malley, P. J.; Lodge, D.; Ornstein, P. L. J Med Chem 1992, 35, 3319.
[19] Baudy, R. B.; Greenblatt, L. P.; Jirkovsky, I. L.; Conklin, M.; Russo, R. J.; Bramlett, D. R.; Emrey, T. A.; Simmonds, J. T.; Kowal, D. M.; Stein, R. P.; Tasse, R. P. J Med Chem 1993, 36, 331.
[20] Keana, F. W.; Kher, S. M.; Cai, S. X.; Dinsmore, C. M.; Glenn, A. G.; Guastella, J.; Huang, J. C.; Ilyin, V.; Lü, Y.; Mouser, P. L.; Woodward, R. M.; Weber, E. J Med Chem 1995, 38, 4367.
[21] Cheeseman, G. W. H. J Chem Soc 1962, 1170.
[22] Mitzel, F.; Gerald, F. S.; Beeby, A.; Faust, R. Chem—Eur J 2003, 9, 1233.
[23] Heck, R. F.; Nolley, J. P. J Org Chem 1972, 37, 2320.
[24] Wagaw, S.; Bryant, H.; Buchwald, S. L. J Am Chem Soc 1998, 120, 6621.
[25] Shadomy, S.; Pfaller, M. A. In Manual of Clinical Microbiology, 5th ed.; Balows, A., Hausler, W. J., Hermann, K. L., Isenberg, H. D., Shadomy, H. J., Eds.; Washington, DC, 1991; Chapter 117, p 1173.
[26] Kazak, C.; Yilmaz, V.; Göker, H.; Kus, C. Acta Crystallogr 2004, E60, m819.
[27] Smith, J. M.; Krchnak, V. Tetrahedron Lett 1999, 40, 7633.
[28] Bansal, R. K.; Bhagchandani, G. Indian J Chem Sect B 1980, 19B, 801.

[^0]: ${ }^{\text {a }}$ Melting point is not in agreement with the data given in ref. 7. However, our elemental analysis result confirms the structure. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C, 46.05; H, 1.66; N, 15.34. Found C, 45.62; H, 1.695; N, 15.17.

